From: Bernhard Tittelbach Date: Wed, 3 Mar 2010 00:13:21 +0000 (+0000) Subject: IR Sensor, PanicButton, OneWireTempSensor X-Git-Url: https://git.realraum.at/?p=svn42.git;a=commitdiff_plain;h=d28fbe27742a031f5bc5c39cd3b5588a39423162 IR Sensor, PanicButton, OneWireTempSensor --- diff --git a/rf433ctl/DallasTemperature/DallasTemperature.cpp b/rf433ctl/DallasTemperature/DallasTemperature.cpp new file mode 100644 index 0000000..5710379 --- /dev/null +++ b/rf433ctl/DallasTemperature/DallasTemperature.cpp @@ -0,0 +1,617 @@ +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. + +#include "DallasTemperature.h" + +extern "C" { + #include "WConstants.h" +} + +DallasTemperature::DallasTemperature(OneWire* _oneWire) + #if REQUIRESALARMS + : _AlarmHandler(&defaultAlarmHandler) + #endif +{ + _wire = _oneWire; + devices = 0; + parasite = false; + conversionDelay = TEMP_9_BIT; +} + +// initialize the bus +void DallasTemperature::begin(void) +{ + DeviceAddress deviceAddress; + + _wire->reset_search(); + + while (_wire->search(deviceAddress)) + { + if (validAddress(deviceAddress)) + { + if (!parasite && readPowerSupply(deviceAddress)) parasite = true; + + ScratchPad scratchPad; + + readScratchPad(deviceAddress, scratchPad); + + if (deviceAddress[0] == DS18S20MODEL) conversionDelay = TEMP_12_BIT; // 750 ms + else if (scratchPad[CONFIGURATION] > conversionDelay) conversionDelay = scratchPad[CONFIGURATION]; + + devices++; + } + } +} + +// returns the number of devices found on the bus +uint8_t DallasTemperature::getDeviceCount(void) +{ + return devices; +} + +// returns true if address is valid +bool DallasTemperature::validAddress(uint8_t* deviceAddress) +{ + return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]); +} + +// finds an address at a given index on the bus +// returns true if the device was found +bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) +{ + uint8_t depth = 0; + + _wire->reset_search(); + + while (depth <= index && _wire->search(deviceAddress)) + { + if (depth == index && validAddress(deviceAddress)) return true; + depth++; + } + + return false; +} + +// attempt to determine if the device at the given address is connected to the bus +bool DallasTemperature::isConnected(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + return isConnected(deviceAddress, scratchPad); +} + +// attempt to determine if the device at the given address is connected to the bus +// also allows for updating the read scratchpad +bool DallasTemperature::isConnected(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + readScratchPad(deviceAddress, scratchPad); + return (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]); +} + +// read device's scratch pad +void DallasTemperature::readScratchPad(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + // send the command + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(READSCRATCH); + + // read the response + + // byte 0: temperature LSB + scratchPad[TEMP_LSB] = _wire->read(); + + // byte 1: temperature MSB + scratchPad[TEMP_MSB] = _wire->read(); + + // byte 2: high alarm temp + scratchPad[HIGH_ALARM_TEMP] = _wire->read(); + + // byte 3: low alarm temp + scratchPad[LOW_ALARM_TEMP] = _wire->read(); + + // byte 4: + // DS18S20: store for crc + // DS18B20 & DS1822: configuration register + scratchPad[CONFIGURATION] = _wire->read(); + + // byte 5: + // internal use & crc + scratchPad[INTERNAL_BYTE] = _wire->read(); + + // byte 6: + // DS18S20: COUNT_REMAIN + // DS18B20 & DS1822: store for crc + scratchPad[COUNT_REMAIN] = _wire->read(); + + // byte 7: + // DS18S20: COUNT_PER_C + // DS18B20 & DS1822: store for crc + scratchPad[COUNT_PER_C] = _wire->read(); + + // byte 8: + // SCTRACHPAD_CRC + scratchPad[SCRATCHPAD_CRC] = _wire->read(); + + _wire->reset(); +} + +// writes device's scratch pad +void DallasTemperature::writeScratchPad(uint8_t* deviceAddress, const uint8_t* scratchPad) +{ + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(WRITESCRATCH); + _wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp + _wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp + // DS18S20 does not use the configuration register + if (deviceAddress[0] != DS18S20MODEL) _wire->write(scratchPad[CONFIGURATION]); // configuration + _wire->reset(); + // save the newly written values to eeprom + _wire->write(COPYSCRATCH, parasite); + if (parasite) delay(10); // 10ms delay + _wire->reset(); +} + +// reads the device's power requirements +bool DallasTemperature::readPowerSupply(uint8_t* deviceAddress) +{ + bool ret = false; + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(READPOWERSUPPLY); + if (_wire->read_bit() == 0) ret = true; + _wire->reset(); + return ret; +} + +// returns the current resolution, 9-12 +uint8_t DallasTemperature::getResolution(uint8_t* deviceAddress) +{ + if (deviceAddress[0] == DS18S20MODEL) return 9; // this model has a fixed resolution + + ScratchPad scratchPad; + readScratchPad(deviceAddress, scratchPad); + switch (scratchPad[CONFIGURATION]) + { + case TEMP_12_BIT: + return 12; + break; + case TEMP_11_BIT: + return 11; + break; + case TEMP_10_BIT: + return 10; + break; + case TEMP_9_BIT: + return 9; + break; + } +} + +// set resolution of a device to 9, 10, 11, or 12 bits +void DallasTemperature::setResolution(uint8_t* deviceAddress, uint8_t newResolution) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + // DS18S20 has a fixed 9-bit resolution + if (deviceAddress[0] != DS18S20MODEL) + { + switch (newResolution) + { + case 12: + scratchPad[CONFIGURATION] = TEMP_12_BIT; + break; + case 11: + scratchPad[CONFIGURATION] = TEMP_11_BIT; + break; + case 10: + scratchPad[CONFIGURATION] = TEMP_10_BIT; + break; + case 9: + default: + scratchPad[CONFIGURATION] = TEMP_9_BIT; + break; + } + writeScratchPad(deviceAddress, scratchPad); + } + } +} + +// sends command for all devices on the bus to perform a temperature +void DallasTemperature::requestTemperatures(void) +{ + _wire->reset(); + _wire->skip(); + _wire->write(STARTCONVO, parasite); + + switch (conversionDelay) + { + case TEMP_9_BIT: + delay(94); + break; + case TEMP_10_BIT: + delay(188); + break; + case TEMP_11_BIT: + delay(375); + break; + case TEMP_12_BIT: + default: + delay(750); + break; + } +} + +// sends command for one device to perform a temperature by address +void DallasTemperature::requestTemperaturesByAddress(uint8_t* deviceAddress) +{ + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(STARTCONVO, parasite); + + switch (conversionDelay) + { + case TEMP_9_BIT: + delay(94); + break; + case TEMP_10_BIT: + delay(188); + break; + case TEMP_11_BIT: + delay(375); + break; + case TEMP_12_BIT: + default: + delay(750); + break; + } +} + +// sends command for one device to perform a temp conversion by index +void DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) +{ + DeviceAddress deviceAddress; + getAddress(deviceAddress, deviceIndex); + requestTemperaturesByAddress(deviceAddress); +} + + +// Fetch temperature for device index +float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) +{ + DeviceAddress deviceAddress; + getAddress(deviceAddress, deviceIndex); + return getTempC((uint8_t*)deviceAddress); +} + +// Fetch temperature for device index +float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) +{ + return DallasTemperature::toFahrenheit(getTempCByIndex(deviceIndex)); +} + +// reads scratchpad and returns the temperature in degrees C +float DallasTemperature::calculateTemperature(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + int16_t rawTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 8) | scratchPad[TEMP_LSB]; + + switch (deviceAddress[0]) + { + case DS18B20MODEL: + case DS1822MODEL: + switch (scratchPad[CONFIGURATION]) + { + case TEMP_12_BIT: + return (float)rawTemperature * 0.0625; + break; + case TEMP_11_BIT: + return (float)(rawTemperature >> 1) * 0.125; + break; + case TEMP_10_BIT: + return (float)(rawTemperature >> 2) * 0.25; + break; + case TEMP_9_BIT: + return (float)(rawTemperature >> 3) * 0.5; + break; + } + break; + case DS18S20MODEL: + /* + + Resolutions greater than 9 bits can be calculated using the data from + the temperature, COUNT REMAIN and COUNT PER °C registers in the + scratchpad. Note that the COUNT PER °C register is hard-wired to 16 + (10h). After reading the scratchpad, the TEMP_READ value is obtained + by truncating the 0.5°C bit (bit 0) from the temperature data. The + extended resolution temperature can then be calculated using the + following equation: + + COUNT_PER_C - COUNT_REMAIN + TEMPERATURE = TEMP_READ - 0.25 + -------------------------- + COUNT_PER_C + */ + + // Good spot. Thanks Nic Johns for your contribution + return (float)(rawTemperature >> 1) - 0.25 +((float)(scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) / (float)scratchPad[COUNT_PER_C] ); + break; + } +} + +// returns temperature in degrees C or DEVICE_DISCONNECTED if the +// device's scratch pad cannot be read successfully. +// the numeric value of DEVICE_DISCONNECTED is defined in +// DallasTemperature.h. it is a large negative number outside the +// operating range of the device +float DallasTemperature::getTempC(uint8_t* deviceAddress) +{ + // TODO: Multiple devices (up to 64) on the same bus may take some time to negotiate a response + // What happens in case of collision? + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return calculateTemperature(deviceAddress, scratchPad); + return DEVICE_DISCONNECTED; +} + +// returns temperature in degrees F +float DallasTemperature::getTempF(uint8_t* deviceAddress) +{ + return toFahrenheit(getTempC(deviceAddress)); +} + +// returns true if the bus requires parasite power +bool DallasTemperature::isParasitePowerMode(void) +{ + return parasite; +} + +#if REQUIRESALARMS + +/* + +ALARMS: + +TH and TL Register Format + +BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 + S 2^6 2^5 2^4 2^3 2^2 2^1 2^0 + +Only bits 11 through 4 of the temperature register are used +in the TH and TL comparison since TH and TL are 8-bit +registers. If the measured temperature is lower than or equal +to TL or higher than or equal to TH, an alarm condition exists +and an alarm flag is set inside the DS18B20. This flag is +updated after every temperature measurement; therefore, if the +alarm condition goes away, the flag will be turned off after +the next temperature conversion. + +*/ + +// sets the high alarm temperature for a device in degrees celsius +// accepts a float, but the alarm resolution will ignore anything +// after a decimal point. valid range is -55C - 125C +void DallasTemperature::setHighAlarmTemp(uint8_t* deviceAddress, char celsius) +{ + // make sure the alarm temperature is within the device's range + if (celsius > 125) celsius = 125; + else if (celsius < -55) celsius = -55; + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + scratchPad[HIGH_ALARM_TEMP] = (uint8_t)celsius; + writeScratchPad(deviceAddress, scratchPad); + } +} + +// sets the low alarm temperature for a device in degreed celsius +// accepts a float, but the alarm resolution will ignore anything +// after a decimal point. valid range is -55C - 125C +void DallasTemperature::setLowAlarmTemp(uint8_t* deviceAddress, char celsius) +{ + // make sure the alarm temperature is within the device's range + if (celsius > 125) celsius = 125; + else if (celsius < -55) celsius = -55; + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + scratchPad[LOW_ALARM_TEMP] = (uint8_t)celsius; + writeScratchPad(deviceAddress, scratchPad); + } +} + +// returns a char with the current high alarm temperature or +// DEVICE_DISCONNECTED for an address +char DallasTemperature::getHighAlarmTemp(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[HIGH_ALARM_TEMP]; + return DEVICE_DISCONNECTED; +} + +// returns a char with the current low alarm temperature or +// DEVICE_DISCONNECTED for an address +char DallasTemperature::getLowAlarmTemp(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[LOW_ALARM_TEMP]; + return DEVICE_DISCONNECTED; +} + +// resets internal variables used for the alarm search +void DallasTemperature::resetAlarmSearch() +{ + alarmSearchJunction = -1; + alarmSearchExhausted = 0; + for(uint8_t i = 0; i < 7; i++) + alarmSearchAddress[i] = 0; +} + +// This is a modified version of the OneWire::search method. +// +// Also added the OneWire search fix documented here: +// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 +// +// Perform an alarm search. If this function returns a '1' then it has +// enumerated the next device and you may retrieve the ROM from the +// OneWire::address variable. If there are no devices, no further +// devices, or something horrible happens in the middle of the +// enumeration then a 0 is returned. If a new device is found then +// its address is copied to newAddr. Use +// DallasTemperature::resetAlarmSearch() to start over. +bool DallasTemperature::alarmSearch(uint8_t* newAddr) +{ + uint8_t i; + char lastJunction = -1; + uint8_t done = 1; + + if (alarmSearchExhausted) return false; + if (!_wire->reset()) return false; + + // send the alarm search command + _wire->write(0xEC, 0); + + for(i = 0; i < 64; i++) + { + uint8_t a = _wire->read_bit( ); + uint8_t nota = _wire->read_bit( ); + uint8_t ibyte = i / 8; + uint8_t ibit = 1 << (i & 7); + + // I don't think this should happen, this means nothing responded, but maybe if + // something vanishes during the search it will come up. + if (a && nota) return false; + + if (!a && !nota) + { + if (i == alarmSearchJunction) + { + // this is our time to decide differently, we went zero last time, go one. + a = 1; + alarmSearchJunction = lastJunction; + } + else if (i < alarmSearchJunction) + { + // take whatever we took last time, look in address + if (alarmSearchAddress[ibyte] & ibit) a = 1; + else + { + // Only 0s count as pending junctions, we've already exhasuted the 0 side of 1s + a = 0; + done = 0; + lastJunction = i; + } + } + else + { + // we are blazing new tree, take the 0 + a = 0; + alarmSearchJunction = i; + done = 0; + } + // OneWire search fix + // See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 + } + + if (a) alarmSearchAddress[ibyte] |= ibit; + else alarmSearchAddress[ibyte] &= ~ibit; + + _wire->write_bit(a); + } + + if (done) alarmSearchExhausted = 1; + for (i = 0; i < 8; i++) newAddr[i] = alarmSearchAddress[i]; + return true; +} + +// returns true if device address has an alarm condition +bool DallasTemperature::hasAlarm(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + float temp = calculateTemperature(deviceAddress, scratchPad); + + // check low alarm + if ((char)temp <= (char)scratchPad[LOW_ALARM_TEMP]) return true; + + // check high alarm + if ((char)temp >= (char)scratchPad[HIGH_ALARM_TEMP]) return true; + } + + // no alarm + return false; +} + +// returns true if any device is reporting an alarm condition on the bus +bool DallasTemperature::hasAlarm(void) +{ + DeviceAddress deviceAddress; + resetAlarmSearch(); + return alarmSearch(deviceAddress); +} + +// runs the alarm handler for all devices returned by alarmSearch() +void DallasTemperature::processAlarms(void) +{ + resetAlarmSearch(); + DeviceAddress alarmAddr; + + while (alarmSearch(alarmAddr)) + { + if (validAddress(alarmAddr)) + _AlarmHandler(alarmAddr); + } +} + +// sets the alarm handler +void DallasTemperature::setAlarmHandler(AlarmHandler *handler) +{ + _AlarmHandler = handler; +} + +// The default alarm handler +void DallasTemperature::defaultAlarmHandler(uint8_t* deviceAddress) +{ +} + +#endif + +// Convert float celsius to fahrenheit +float DallasTemperature::toFahrenheit(float celsius) +{ + return (celsius * 1.8) + 32; +} + +// Convert float fahrenheit to celsius +float DallasTemperature::toCelsius(float fahrenheit) +{ + return (fahrenheit - 32) / 1.8; +} + +#if REQUIRESNEW + +// MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object +void* DallasTemperature::operator new(unsigned int size) // Implicit NSS obj size +{ + void * p; // void pointer + p = malloc(size); // Allocate memory + memset((DallasTemperature*)p,0,size); // Initalise memory + + //!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method + return (DallasTemperature*) p; // Cast blank region to NSS pointer +} + +// MnetCS 2009 - Unallocates the memory used by this instance +void DallasTemperature::operator delete(void* p) +{ + DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer + pNss->~DallasTemperature(); // Destruct the object + + free(p); // Free the memory +} + +#endif diff --git a/rf433ctl/DallasTemperature/DallasTemperature.h b/rf433ctl/DallasTemperature/DallasTemperature.h new file mode 100644 index 0000000..9e57fe2 --- /dev/null +++ b/rf433ctl/DallasTemperature/DallasTemperature.h @@ -0,0 +1,213 @@ +#ifndef DallasTemperature_h +#define DallasTemperature_h + +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. + +// set to true to include code for new and delete operators +#ifndef REQUIRESNEW +#define REQUIRESNEW false +#endif + +// set to true to include code implementing alarm search functions +#ifndef REQUIRESALARMS +#define REQUIRESALARMS true +#endif + +#include +#include + +// Model IDs +#define DS18S20MODEL 0x10 +#define DS18B20MODEL 0x28 +#define DS1822MODEL 0x22 + +// OneWire commands +#define STARTCONVO 0x44 // Tells device to take a temperature reading and put it on the scratchpad +#define COPYSCRATCH 0x48 // Copy EEPROM +#define READSCRATCH 0xBE // Read EEPROM +#define WRITESCRATCH 0x4E // Write to EEPROM +#define RECALLSCRATCH 0xB8 // Reload from last known +#define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power +#define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition + +// Scratchpad locations +#define TEMP_LSB 0 +#define TEMP_MSB 1 +#define HIGH_ALARM_TEMP 2 +#define LOW_ALARM_TEMP 3 +#define CONFIGURATION 4 +#define INTERNAL_BYTE 5 +#define COUNT_REMAIN 6 +#define COUNT_PER_C 7 +#define SCRATCHPAD_CRC 8 + +// Device resolution +#define TEMP_9_BIT 0x1F // 9 bit +#define TEMP_10_BIT 0x3F // 10 bit +#define TEMP_11_BIT 0x5F // 11 bit +#define TEMP_12_BIT 0x7F // 12 bit + +// Error Codes +#define DEVICE_DISCONNECTED -127 + +typedef uint8_t DeviceAddress[8]; + +class DallasTemperature +{ + public: + + DallasTemperature(OneWire*); + + // initalize bus + void begin(void); + + // returns the number of devices found on the bus + uint8_t getDeviceCount(void); + + // returns true if address is valid + bool validAddress(uint8_t*); + + // finds an address at a given index on the bus + bool getAddress(uint8_t*, const uint8_t); + + // attempt to determine if the device at the given address is connected to the bus + bool isConnected(uint8_t*); + + // attempt to determine if the device at the given address is connected to the bus + // also allows for updating the read scratchpad + bool isConnected(uint8_t*, uint8_t*); + + // read device's scratchpad + void readScratchPad(uint8_t*, uint8_t*); + + // write device's scratchpad + void writeScratchPad(uint8_t*, const uint8_t*); + + // read device's power requirements + bool readPowerSupply(uint8_t*); + + // returns the current resolution, 9-12 + uint8_t getResolution(uint8_t*); + + // set resolution of a device to 9, 10, 11, or 12 bits + void setResolution(uint8_t*, uint8_t); + + // sends command for all devices on the bus to perform a temperature conversion + void requestTemperatures(void); + + // sends command for one device to perform a temperature conversion by address + void requestTemperaturesByAddress(uint8_t*); + + // sends command for one device to perform a temperature conversion by index + void requestTemperaturesByIndex(uint8_t); + + // returns temperature in degrees C + float getTempC(uint8_t*); + + // returns temperature in degrees F + float getTempF(uint8_t*); + + // Get temperature for device index (slow) + float getTempCByIndex(uint8_t); + + // Get temperature for device index (slow) + float getTempFByIndex(uint8_t); + + // returns true if the bus requires parasite power + bool isParasitePowerMode(void); + + #if REQUIRESALARMS + + typedef void AlarmHandler(uint8_t*); + + // sets the high alarm temperature for a device + // accepts a char. valid range is -55C - 125C + void setHighAlarmTemp(uint8_t*, const char); + + // sets the low alarm temperature for a device + // accepts a char. valid range is -55C - 125C + void setLowAlarmTemp(uint8_t*, const char); + + // returns a signed char with the current high alarm temperature for a device + // in the range -55C - 125C + char getHighAlarmTemp(uint8_t*); + + // returns a signed char with the current low alarm temperature for a device + // in the range -55C - 125C + char getLowAlarmTemp(uint8_t*); + + // resets internal variables used for the alarm search + void resetAlarmSearch(void); + + // search the wire for devices with active alarms + bool alarmSearch(uint8_t*); + + // returns true if ia specific device has an alarm + bool hasAlarm(uint8_t*); + + // returns true if any device is reporting an alarm on the bus + bool hasAlarm(void); + + // runs the alarm handler for all devices returned by alarmSearch() + void processAlarms(void); + + // sets the alarm handler + void setAlarmHandler(AlarmHandler *); + + // The default alarm handler + static void defaultAlarmHandler(uint8_t*); + + #endif + + // convert from celcius to farenheit + static float toFahrenheit(const float); + + // convert from farenheit to celsius + static float toCelsius(const float); + + #if REQUIRESNEW + + // initalize memory area + void* operator new (unsigned int); + + // delete memory reference + void operator delete(void*); + + #endif + + private: + typedef uint8_t ScratchPad[9]; + + // parasite power on or off + bool parasite; + + // used to determine the delay amount needed to allow for the + // temperature conversion to take place + int conversionDelay; + + // count of devices on the bus + uint8_t devices; + + // Take a pointer to one wire instance + OneWire* _wire; + + // reads scratchpad and returns the temperature in degrees C + float calculateTemperature(uint8_t*, uint8_t*); + + #if REQUIRESALARMS + + // required for alarmSearch + uint8_t alarmSearchAddress[8]; + char alarmSearchJunction; + uint8_t alarmSearchExhausted; + + // the alarm handler function pointer + AlarmHandler *_AlarmHandler; + + #endif + +}; +#endif diff --git a/rf433ctl/DallasTemperature/README b/rf433ctl/DallasTemperature/README new file mode 100644 index 0000000..829d266 --- /dev/null +++ b/rf433ctl/DallasTemperature/README @@ -0,0 +1,51 @@ +Arduino Library for Dallas Temperature ICs +========================================== + +Usage +----- + +This library supports the following devices: + DS18B20 + DS18S20 - Please note there appears to be an issue with this series. + DS1822 + +You will need a pull-up resistor of about 5 KOhm between the 1-Wire data line +and your 5V power. If you are using the DS18B20, ground pins 1 and 3. The +centre pin is the data line '1-wire'. + +We have included a "REQUIRESNEW" and "REQUIRESALARMS" definition. If you +want to slim down the code feel free to use either of these by including +#define REQUIRESNEW or #define REQUIRESALARMS a the top of DallasTemperature.h + +Credits +------- + +The OneWire code has been derived from +http://www.arduino.cc/playground/Learning/OneWire. +Miles Burton originally developed this library. +Tim Newsome added support for multiple sensors on +the same bus. +Guil Barros [gfbarros@bappos.com] added getTempByAddress (v3.5) + +Website +------- + +You can find the latest version of the library at +http://milesburton.com/index.php?title=Dallas_Temperature_Control_Library + +License +------- + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA diff --git a/rf433ctl/DallasTemperature/examples/Alarm/Alarm.pde b/rf433ctl/DallasTemperature/examples/Alarm/Alarm.pde new file mode 100644 index 0000000..e0884ea --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/Alarm/Alarm.pde @@ -0,0 +1,162 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 3 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // search for devices on the bus and assign based on an index. + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + Serial.print("Device 0 Alarms: "); + printAlarms(insideThermometer); + Serial.println(); + + Serial.print("Device 1 Address: "); + printAddress(outsideThermometer); + Serial.println(); + + Serial.print("Device 1 Alarms: "); + printAlarms(outsideThermometer); + Serial.println(); + + Serial.println("Setting alarm temps..."); + + // alarm when temp is higher than 30C + sensors.setHighAlarmTemp(insideThermometer, 30); + + // alarm when temp is lower than -10C + sensors.setLowAlarmTemp(insideThermometer, -10); + + // alarm when temp is higher than 31C + sensors.setHighAlarmTemp(outsideThermometer, 31); + + // alarn when temp is lower than 27C + sensors.setLowAlarmTemp(outsideThermometer, 27); + + Serial.print("New Device 0 Alarms: "); + printAlarms(insideThermometer); + Serial.println(); + + Serial.print("New Device 1 Alarms: "); + printAlarms(outsideThermometer); + Serial.println(); +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.print(DallasTemperature::toFahrenheit(tempC)); +} + +void printAlarms(uint8_t deviceAddress[]) +{ + char temp; + temp = sensors.getHighAlarmTemp(deviceAddress); + Serial.print("High Alarm: "); + Serial.print(temp, DEC); + Serial.print("C/"); + Serial.print(DallasTemperature::toFahrenheit(temp)); + Serial.print("F | Low Alarm: "); + temp = sensors.getLowAlarmTemp(deviceAddress); + Serial.print(temp, DEC); + Serial.print("C/"); + Serial.print(DallasTemperature::toFahrenheit(temp)); + Serial.print("F"); +} + +// main function to print information about a device +void printData(DeviceAddress deviceAddress) +{ + Serial.print("Device Address: "); + printAddress(deviceAddress); + Serial.print(" "); + printTemperature(deviceAddress); + Serial.println(); +} + +void checkAlarm(DeviceAddress deviceAddress) +{ + if (sensors.hasAlarm(deviceAddress)) + { + Serial.print("ALARM: "); + printData(deviceAddress); + } +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); + Serial.println("DONE"); + + // Method 1: + // check each address individually for an alarm condition + checkAlarm(insideThermometer); + checkAlarm(outsideThermometer); +/* + // Alternate method: + // Search the bus and iterate through addresses of devices with alarms + + // space for the alarm device's address + DeviceAddress alarmAddr; + + Serial.println("Searching for alarms..."); + + // resetAlarmSearch() must be called before calling alarmSearch() + sensors.resetAlarmSearch(); + + // alarmSearch() returns 0 when there are no devices with alarms + while (sensors.alarmSearch(alarmAddr)) + { + Serial.print("ALARM: "); + printData(alarmAddr); + } +*/ + +} + diff --git a/rf433ctl/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde b/rf433ctl/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde new file mode 100644 index 0000000..d52e1f7 --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde @@ -0,0 +1,145 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 3 +#define TEMPERATURE_PRECISION 9 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +// function that will be called when an alarm condition exists during DallasTemperatures::processAlarms(); +void newAlarmHandler(uint8_t* deviceAddress) +{ + Serial.println("Alarm Handler Start"); + printAlarmInfo(deviceAddress); + printTemp(deviceAddress); + Serial.println(); + Serial.println("Alarm Handler Finish"); +} + +void printCurrentTemp(DeviceAddress deviceAddress) +{ + printAddress(deviceAddress); + printTemp(deviceAddress); + Serial.println(); +} + +void printAddress(DeviceAddress deviceAddress) +{ + Serial.print("Address: "); + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } + Serial.print(" "); +} + +void printTemp(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + if (tempC != DEVICE_DISCONNECTED) + { + Serial.print("Current Temp C: "); + Serial.print(tempC); + } + else Serial.print("DEVICE DISCONNECTED"); + Serial.print(" "); +} + +void printAlarmInfo(DeviceAddress deviceAddress) +{ + char temp; + printAddress(deviceAddress); + temp = sensors.getHighAlarmTemp(deviceAddress); + Serial.print("High Alarm: "); + Serial.print(temp, DEC); + Serial.print("C"); + Serial.print(" Low Alarm: "); + temp = sensors.getLowAlarmTemp(deviceAddress); + Serial.print(temp, DEC); + Serial.print("C"); + Serial.print(" "); +} + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // search for devices on the bus and assign based on an index + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + Serial.print("Device insideThermometer "); + printAlarmInfo(insideThermometer); + Serial.println(); + + Serial.print("Device outsideThermometer "); + printAlarmInfo(outsideThermometer); + Serial.println(); + + // set alarm ranges + Serial.println("Setting alarm temps..."); + sensors.setHighAlarmTemp(insideThermometer, 26); + sensors.setLowAlarmTemp(insideThermometer, 22); + sensors.setHighAlarmTemp(outsideThermometer, 25); + sensors.setLowAlarmTemp(outsideThermometer, 21); + + Serial.print("New insideThermometer "); + printAlarmInfo(insideThermometer); + Serial.println(); + + Serial.print("New outsideThermometer "); + printAlarmInfo(outsideThermometer); + Serial.println(); + + // attach alarm handler + sensors.setAlarmHandler(&newAlarmHandler); + +} + +void loop(void) +{ + // ask the devices to measure the temperature + sensors.requestTemperatures(); + + // if an alarm condition exists as a result of the most recent + // requestTemperatures() request, it exists until the next time + // requestTemperatures() is called AND there isn't an alarm condition + // on the device + if (sensors.hasAlarm()) + { + Serial.println("Oh noes! There is at least one alarm on the bus."); + } + + // call alarm handler function defined by sensors.setAlarmHandler + // for each device reporting an alarm + sensors.processAlarms(); + + if (!sensors.hasAlarm()) + { + // just print out the current temperature + printCurrentTemp(insideThermometer); + printCurrentTemp(outsideThermometer); + } + + delay(1000); +} + diff --git a/rf433ctl/DallasTemperature/examples/Multiple/Multiple.pde b/rf433ctl/DallasTemperature/examples/Multiple/Multiple.pde new file mode 100644 index 0000000..2694d07 --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/Multiple/Multiple.pde @@ -0,0 +1,140 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 3 +#define TEMPERATURE_PRECISION 9 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Locating devices..."); + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // assign address manually. the addresses below will beed to be changed + // to valid device addresses on your bus. device address can be retrieved + // by using either oneWire.search(deviceAddress) or individually via + // sensors.getAddress(deviceAddress, index) + //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 }; + //outsideThermometer = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 }; + + // search for devices on the bus and assign based on an index. ideally, + // you would do this to initially discover addresses on the bus and then + // use those addresses and manually assign them (see above) once you know + // the devices on your bus (and assuming they don't change). + // + // method 1: by index + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + // method 2: search() + // search() looks for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are no devices, + // or you have already retrieved all of them. It might be a good idea to + // check the CRC to make sure you didn't get garbage. The order is + // deterministic. You will always get the same devices in the same order + // + // Must be called before search() + //oneWire.reset_search(); + // assigns the first address found to insideThermometer + //if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer"); + // assigns the seconds address found to outsideThermometer + //if (!oneWire.search(outsideThermometer)) Serial.println("Unable to find address for outsideThermometer"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + Serial.print("Device 1 Address: "); + printAddress(outsideThermometer); + Serial.println(); + + // set the resolution to 9 bit + sensors.setResolution(insideThermometer, 9); + sensors.setResolution(outsideThermometer, 9); + + Serial.print("Device 0 Resolution: "); + Serial.print(sensors.getResolution(insideThermometer), DEC); + Serial.println(); + + Serial.print("Device 1 Resolution: "); + Serial.print(sensors.getResolution(outsideThermometer), DEC); + Serial.println(); +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + // zero pad the address if necessary + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.print(DallasTemperature::toFahrenheit(tempC)); +} + +// function to print a device's resolution +void printResolution(DeviceAddress deviceAddress) +{ + Serial.print("Resolution: "); + Serial.print(sensors.getResolution(deviceAddress)); + Serial.println(); +} + +// main function to print information about a device +void printData(DeviceAddress deviceAddress) +{ + Serial.print("Device Address: "); + printAddress(deviceAddress); + Serial.print(" "); + printTemperature(deviceAddress); + Serial.println(); +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); + Serial.println("DONE"); + + // print the device information + printData(insideThermometer); + printData(outsideThermometer); +} + diff --git a/rf433ctl/DallasTemperature/examples/Simple/Simple.pde b/rf433ctl/DallasTemperature/examples/Simple/Simple.pde new file mode 100644 index 0000000..5b2954d --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/Simple/Simple.pde @@ -0,0 +1,33 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); // Send the command to get temperatures + Serial.println("DONE"); + + Serial.print("Temperature for the device 1 (index 0) is: "); + Serial.println(sensors.getTempCByIndex(0)); +} diff --git a/rf433ctl/DallasTemperature/examples/Single/Single.pde b/rf433ctl/DallasTemperature/examples/Single/Single.pde new file mode 100644 index 0000000..57994b6 --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/Single/Single.pde @@ -0,0 +1,109 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 3 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device address +DeviceAddress insideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // locate devices on the bus + Serial.print("Locating devices..."); + sensors.begin(); + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // assign address manually. the addresses below will beed to be changed + // to valid device addresses on your bus. device address can be retrieved + // by using either oneWire.search(deviceAddress) or individually via + // sensors.getAddress(deviceAddress, index) + //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 }; + + // Method 1: + // search for devices on the bus and assign based on an index. ideally, + // you would do this to initially discover addresses on the bus and then + // use those addresses and manually assign them (see above) once you know + // the devices on your bus (and assuming they don't change). + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + + // method 2: search() + // search() looks for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are no devices, + // or you have already retrieved all of them. It might be a good idea to + // check the CRC to make sure you didn't get garbage. The order is + // deterministic. You will always get the same devices in the same order + // + // Must be called before search() + //oneWire.reset_search(); + // assigns the first address found to insideThermometer + //if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + // set the resolution to 9 bit (Each Dallas/Maxim device is capable of several different resolutions) + sensors.setResolution(insideThermometer, 9); + + Serial.print("Device 0 Resolution: "); + Serial.print(sensors.getResolution(insideThermometer), DEC); + Serial.println(); +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + // method 1 - slower + //Serial.print("Temp C: "); + //Serial.print(sensors.getTempC(deviceAddress)); + //Serial.print(" Temp F: "); + //Serial.print(sensors.getTempF(deviceAddress)); // Makes a second call to getTempC and then converts to Fahrenheit + + // method 2 - faster + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); // Send the command to get temperatures + Serial.println("DONE"); + + // It responds almost immediately. Let's print out the data + printTemperature(insideThermometer); // Use a simple function to print out the data +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} diff --git a/rf433ctl/DallasTemperature/examples/Tester/Tester.pde b/rf433ctl/DallasTemperature/examples/Tester/Tester.pde new file mode 100644 index 0000000..063d265 --- /dev/null +++ b/rf433ctl/DallasTemperature/examples/Tester/Tester.pde @@ -0,0 +1,124 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 3 +#define TEMPERATURE_PRECISION 9 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +int numberOfDevices; // Number of temperature devices found + +DeviceAddress tempDeviceAddress; // We'll use this variable to store a found device address + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // Grab a count of devices on the wire + numberOfDevices = sensors.getDeviceCount(); + + // locate devices on the bus + Serial.print("Locating devices..."); + + Serial.print("Found "); + Serial.print(numberOfDevices, DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // Loop through each device, print out address + for(int i=0;i +#include +#include +} + +OneWire::OneWire(uint8_t pin) +{ + bitmask = digitalPinToBitMask(pin); + baseReg = portInputRegister(digitalPinToPort(pin)); +#if ONEWIRE_SEARCH + reset_search(); +#endif +} + + +#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0) +#define DIRECT_MODE_INPUT(base, mask) ((*(base+1)) &= ~(mask)) +#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) |= (mask)) +#define DIRECT_WRITE_LOW(base, mask) ((*(base+2)) &= ~(mask)) +#define DIRECT_WRITE_HIGH(base, mask) ((*(base+2)) |= (mask)) + + +// Perform the onewire reset function. We will wait up to 250uS for +// the bus to come high, if it doesn't then it is broken or shorted +// and we return a 0; +// +// Returns 1 if a device asserted a presence pulse, 0 otherwise. +// +uint8_t OneWire::reset(void) +{ + uint8_t mask=bitmask; + volatile uint8_t *reg asm("r30") = baseReg; + uint8_t r; + uint8_t retries = 125; + + cli(); + DIRECT_MODE_INPUT(reg, mask); + sei(); + // wait until the wire is high... just in case + do { + if (--retries == 0) return 0; + delayMicroseconds(2); + } while ( !DIRECT_READ(reg, mask)); + + cli(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + sei(); + delayMicroseconds(500); + cli(); + DIRECT_MODE_INPUT(reg, mask); // allow it to float + delayMicroseconds(80); + r = !DIRECT_READ(reg, mask); + sei(); + delayMicroseconds(420); + return r; +} + +// +// Write a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +void OneWire::write_bit(uint8_t v) +{ + uint8_t mask=bitmask; + volatile uint8_t *reg asm("r30") = baseReg; + + if (v & 1) { + cli(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(10); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + sei(); + delayMicroseconds(55); + } else { + cli(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(65); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + sei(); + delayMicroseconds(5); + } +} + +// +// Read a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +uint8_t OneWire::read_bit(void) +{ + uint8_t mask=bitmask; + volatile uint8_t *reg asm("r30") = baseReg; + uint8_t r; + + cli(); + DIRECT_MODE_OUTPUT(reg, mask); + DIRECT_WRITE_LOW(reg, mask); + delayMicroseconds(3); + DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise + delayMicroseconds(9); + r = DIRECT_READ(reg, mask); + sei(); + delayMicroseconds(53); + return r; +} + +// +// Write a byte. The writing code uses the active drivers to raise the +// pin high, if you need power after the write (e.g. DS18S20 in +// parasite power mode) then set 'power' to 1, otherwise the pin will +// go tri-state at the end of the write to avoid heating in a short or +// other mishap. +// +void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { + uint8_t bitMask; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + OneWire::write_bit( (bitMask & v)?1:0); + } + if ( !power) { + cli(); + DIRECT_MODE_INPUT(baseReg, bitmask); + DIRECT_WRITE_LOW(baseReg, bitmask); + sei(); + } +} + +// +// Read a byte +// +uint8_t OneWire::read() { + uint8_t bitMask; + uint8_t r = 0; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + if ( OneWire::read_bit()) r |= bitMask; + } + return r; +} + +// +// Do a ROM select +// +void OneWire::select( uint8_t rom[8]) +{ + int i; + + write(0x55); // Choose ROM + + for( i = 0; i < 8; i++) write(rom[i]); +} + +// +// Do a ROM skip +// +void OneWire::skip() +{ + write(0xCC); // Skip ROM +} + +void OneWire::depower() +{ + cli(); + DIRECT_MODE_INPUT(baseReg, bitmask); + sei(); +} + +#if ONEWIRE_SEARCH + +// +// You need to use this function to start a search again from the beginning. +// You do not need to do it for the first search, though you could. +// +void OneWire::reset_search() + { + // reset the search state + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + for(int i = 7; ; i--) + { + ROM_NO[i] = 0; + if ( i == 0) break; + } + } + +// +// Perform a search. If this function returns a '1' then it has +// enumerated the next device and you may retrieve the ROM from the +// OneWire::address variable. If there are no devices, no further +// devices, or something horrible happens in the middle of the +// enumeration then a 0 is returned. If a new device is found then +// its address is copied to newAddr. Use OneWire::reset_search() to +// start over. +// +// --- Replaced by the one from the Dallas Semiconductor web site --- +//-------------------------------------------------------------------------- +// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing +// search state. +// Return TRUE : device found, ROM number in ROM_NO buffer +// FALSE : device not found, end of search +// +uint8_t OneWire::search(uint8_t *newAddr) +{ + uint8_t id_bit_number; + uint8_t last_zero, rom_byte_number, search_result; + uint8_t id_bit, cmp_id_bit; + + unsigned char rom_byte_mask, search_direction; + + // initialize for search + id_bit_number = 1; + last_zero = 0; + rom_byte_number = 0; + rom_byte_mask = 1; + search_result = 0; + + // if the last call was not the last one + if (!LastDeviceFlag) + { + // 1-Wire reset + if (!reset()) + { + // reset the search + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + return FALSE; + } + + // issue the search command + write(0xF0); + + // loop to do the search + do + { + // read a bit and its complement + id_bit = read_bit(); + cmp_id_bit = read_bit(); + + // check for no devices on 1-wire + if ((id_bit == 1) && (cmp_id_bit == 1)) + break; + else + { + // all devices coupled have 0 or 1 + if (id_bit != cmp_id_bit) + search_direction = id_bit; // bit write value for search + else + { + // if this discrepancy if before the Last Discrepancy + // on a previous next then pick the same as last time + if (id_bit_number < LastDiscrepancy) + search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); + else + // if equal to last pick 1, if not then pick 0 + search_direction = (id_bit_number == LastDiscrepancy); + + // if 0 was picked then record its position in LastZero + if (search_direction == 0) + { + last_zero = id_bit_number; + + // check for Last discrepancy in family + if (last_zero < 9) + LastFamilyDiscrepancy = last_zero; + } + } + + // set or clear the bit in the ROM byte rom_byte_number + // with mask rom_byte_mask + if (search_direction == 1) + ROM_NO[rom_byte_number] |= rom_byte_mask; + else + ROM_NO[rom_byte_number] &= ~rom_byte_mask; + + // serial number search direction write bit + write_bit(search_direction); + + // increment the byte counter id_bit_number + // and shift the mask rom_byte_mask + id_bit_number++; + rom_byte_mask <<= 1; + + // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask + if (rom_byte_mask == 0) + { + rom_byte_number++; + rom_byte_mask = 1; + } + } + } + while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 + + // if the search was successful then + if (!(id_bit_number < 65)) + { + // search successful so set LastDiscrepancy,LastDeviceFlag,search_result + LastDiscrepancy = last_zero; + + // check for last device + if (LastDiscrepancy == 0) + LastDeviceFlag = TRUE; + + search_result = TRUE; + } + } + + // if no device found then reset counters so next 'search' will be like a first + if (!search_result || !ROM_NO[0]) + { + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + search_result = FALSE; + } + for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; + return search_result; + } + +#endif + +#if ONEWIRE_CRC +// The 1-Wire CRC scheme is described in Maxim Application Note 27: +// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" +// + +#if ONEWIRE_CRC8_TABLE +// This table comes from Dallas sample code where it is freely reusable, +// though Copyright (C) 2000 Dallas Semiconductor Corporation +static const uint8_t PROGMEM dscrc_table[] = { + 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, + 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, + 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, + 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, + 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, + 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, + 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, + 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, + 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, + 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, + 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, + 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, + 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, + 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, + 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, + 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; + +// +// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM +// and the registers. (note: this might better be done without to +// table, it would probably be smaller and certainly fast enough +// compared to all those delayMicrosecond() calls. But I got +// confused, so I use this table from the examples.) +// +uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); + } + return crc; +} +#else +// +// Compute a Dallas Semiconductor 8 bit CRC directly. +// +uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + uint8_t inbyte = *addr++; + for (uint8_t i = 8; i; i--) { + uint8_t mix = (crc ^ inbyte) & 0x01; + crc >>= 1; + if (mix) crc ^= 0x8C; + inbyte >>= 1; + } + } + return crc; +} +#endif + +#if ONEWIRE_CRC16 +static short oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; + +// +// Compute a Dallas Semiconductor 16 bit CRC. I have never seen one of +// these, but here it is. +// +unsigned short OneWire::crc16(unsigned short *data, unsigned short len) +{ + unsigned short i; + unsigned short crc = 0; + + for ( i = 0; i < len; i++) { + unsigned short cdata = data[len]; + + cdata = (cdata ^ (crc & 0xff)) & 0xff; + crc >>= 8; + + if (oddparity[cdata & 0xf] ^ oddparity[cdata >> 4]) crc ^= 0xc001; + + cdata <<= 6; + crc ^= cdata; + cdata <<= 1; + crc ^= cdata; + } + return crc; +} +#endif + +#endif diff --git a/rf433ctl/OneWire/OneWire.h b/rf433ctl/OneWire/OneWire.h new file mode 100644 index 0000000..c579b94 --- /dev/null +++ b/rf433ctl/OneWire/OneWire.h @@ -0,0 +1,110 @@ +#ifndef OneWire_h +#define OneWire_h + +#include + +// you can exclude onewire_search by defining that to 0 +#ifndef ONEWIRE_SEARCH +#define ONEWIRE_SEARCH 1 +#endif + +// You can exclude CRC checks altogether by defining this to 0 +#ifndef ONEWIRE_CRC +#define ONEWIRE_CRC 1 +#endif + +// Select the table-lookup method of computing the 8-bit CRC +// by setting this to 1. The lookup table no longer consumes +// limited RAM, but enlarges total code size by about 250 bytes +#ifndef ONEWIRE_CRC8_TABLE +#define ONEWIRE_CRC8_TABLE 0 +#endif + +// You can allow 16-bit CRC checks by defining this to 1 +// (Note that ONEWIRE_CRC must also be 1.) +#ifndef ONEWIRE_CRC16 +#define ONEWIRE_CRC16 0 +#endif + +#define FALSE 0 +#define TRUE 1 + +class OneWire +{ + private: + uint8_t bitmask; + volatile uint8_t *baseReg; + +#if ONEWIRE_SEARCH + // global search state + unsigned char ROM_NO[8]; + uint8_t LastDiscrepancy; + uint8_t LastFamilyDiscrepancy; + uint8_t LastDeviceFlag; +#endif + + public: + OneWire( uint8_t pin); + + // Perform a 1-Wire reset cycle. Returns 1 if a device responds + // with a presence pulse. Returns 0 if there is no device or the + // bus is shorted or otherwise held low for more than 250uS + uint8_t reset(void); + + // Issue a 1-Wire rom select command, you do the reset first. + void select( uint8_t rom[8]); + + // Issue a 1-Wire rom skip command, to address all on bus. + void skip(void); + + // Write a byte. If 'power' is one then the wire is held high at + // the end for parasitically powered devices. You are responsible + // for eventually depowering it by calling depower() or doing + // another read or write. + void write(uint8_t v, uint8_t power = 0); + + // Read a byte. + uint8_t read(void); + + // Write a bit. The bus is always left powered at the end, see + // note in write() about that. + void write_bit(uint8_t v); + + // Read a bit. + uint8_t read_bit(void); + + // Stop forcing power onto the bus. You only need to do this if + // you used the 'power' flag to write() or used a write_bit() call + // and aren't about to do another read or write. You would rather + // not leave this powered if you don't have to, just in case + // someone shorts your bus. + void depower(void); + +#if ONEWIRE_SEARCH + // Clear the search state so that if will start from the beginning again. + void reset_search(); + + // Look for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are + // no devices, or you have already retrieved all of them. It + // might be a good idea to check the CRC to make sure you didn't + // get garbage. The order is deterministic. You will always get + // the same devices in the same order. + uint8_t search(uint8_t *newAddr); +#endif + +#if ONEWIRE_CRC + // Compute a Dallas Semiconductor 8 bit CRC, these are used in the + // ROM and scratchpad registers. + static uint8_t crc8( uint8_t *addr, uint8_t len); + +#if ONEWIRE_CRC16 + // Compute a Dallas Semiconductor 16 bit CRC. Maybe. I don't have + // any devices that use this so this might be wrong. I just copied + // it from their sample code. + static unsigned short crc16(unsigned short *data, unsigned short len); +#endif +#endif +}; + +#endif diff --git a/rf433ctl/OneWire/examples/readme.txt b/rf433ctl/OneWire/examples/readme.txt new file mode 100644 index 0000000..02252de --- /dev/null +++ b/rf433ctl/OneWire/examples/readme.txt @@ -0,0 +1,28 @@ + +OneWire library for Arduino +--------------------------- + +Version 2.0 fixes search bugs (thanks to Robin James) and interrupt issues. +http://www.pjrc.com/teensy/td_libs_OneWire.html + + +This is a slightly modified version of the OneWire library originally written by Jim Studt for arduino-0007 and later updated for arduino-0008 by Josh Larios. This new version eliminates the large lookup table that was previously used by the checksum calculation - otherwise it's identical to Josh's version. It was developed under arduino-0010. + +For a general description and links, see + + http://www.arduino.cc/playground/Learning/OneWire + +Jim Studt's original verion of this library is still available at + + http://www.federated.com/~jim/onewire/ + +Josh Larios' version is available at + + http://www.elsewhere.org/onewire/ + +To install this library, you should just have to unzip the archive in the arduino-0010/hardware/libraries directory. It will create a subdirectory +called 'OneWire'. + +Tom Pollard +pollard@alum.mit.edu +May 20, 2008 diff --git a/rf433ctl/OneWire/examples/sample/sample.pde b/rf433ctl/OneWire/examples/sample/sample.pde new file mode 100644 index 0000000..9124f52 --- /dev/null +++ b/rf433ctl/OneWire/examples/sample/sample.pde @@ -0,0 +1,64 @@ +#include + +/* DS18S20 Temperature chip i/o */ + +OneWire ds(8); // on pin 10 + +void setup(void) { + Serial.begin(9600); +} + +void loop(void) { + byte i; + byte present = 0; + byte data[12]; + byte addr[8]; + + if ( !ds.search(addr)) { + Serial.print("No more addresses.\n"); + ds.reset_search(); + delay(250); + return; + } + + Serial.print("R="); + for( i = 0; i < 8; i++) { + Serial.print(addr[i], HEX); + Serial.print(" "); + } + + if ( OneWire::crc8( addr, 7) != addr[7]) { + Serial.print("CRC is not valid!\n"); + return; + } + + if ( addr[0] != 0x10) { + Serial.print("Device is not a DS18S20 family device.\n"); + return; + } + + // The DallasTemperature library can do all this work for you! + + ds.reset(); + ds.select(addr); + ds.write(0x44,1); // start conversion, with parasite power on at the end + + delay(1000); // maybe 750ms is enough, maybe not + // we might do a ds.depower() here, but the reset will take care of it. + + present = ds.reset(); + ds.select(addr); + ds.write(0xBE); // Read Scratchpad + + Serial.print("P="); + Serial.print(present,HEX); + Serial.print(" "); + for ( i = 0; i < 9; i++) { // we need 9 bytes + data[i] = ds.read(); + Serial.print(data[i], HEX); + Serial.print(" "); + } + Serial.print(" CRC="); + Serial.print( OneWire::crc8( data, 8), HEX); + Serial.println(); +} diff --git a/rf433ctl/OneWire/keywords.txt b/rf433ctl/OneWire/keywords.txt new file mode 100644 index 0000000..243bc1a --- /dev/null +++ b/rf433ctl/OneWire/keywords.txt @@ -0,0 +1,35 @@ +####################################### +# Syntax Coloring Map For OneWire +####################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### + +OneWire KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +reset KEYWORD2 +write_bit KEYWORD2 +read_bit KEYWORD2 +write KEYWORD2 +read KEYWORD2 +select KEYWORD2 +skip KEYWORD2 +depower KEYWORD2 +reset_search KEYWORD2 +search KEYWORD2 +crc8 KEYWORD2 +crc16 KEYWORD2 + +####################################### +# Instances (KEYWORD2) +####################################### + + +####################################### +# Constants (LITERAL1) +####################################### diff --git a/rf433ctl/README b/rf433ctl/README index 916af03..093186a 100644 --- a/rf433ctl/README +++ b/rf433ctl/README @@ -17,3 +17,11 @@ Realraum tuer instructions: 6. flash it (press reset) $ make upload + + + +Arduino OneWire Lib 2.0: +http://www.pjrc.com/teensy/td_libs_OneWire.html + +Dallas Temperature Library: +http://download.milesburton.com/Arduino/MaximTemperature/DallasTemperature_350.zip diff --git a/rf433ctl/find_onewire.pde b/rf433ctl/find_onewire.pde new file mode 100644 index 0000000..8fedb62 --- /dev/null +++ b/rf433ctl/find_onewire.pde @@ -0,0 +1,86 @@ +#include +#include + +/* DS18S20 Temperature chip i/o */ + +OneWire ds(8); +DallasTemperature sensors(&ds); + +DeviceAddress insideThermometer = { 0x10, 0xE7, 0x77, 0xD3, 0x01, 0x08, 0x00, 0x3F }; + +void printTemperature(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit +} + +void setup(void) { + Serial.begin(9600); + sensors.begin(); +} + +void loop(void) { + if (millis() < 2000) + { + return; + } + + printTemperature(insideThermometer); + + byte i; + byte present = 0; + byte data[12]; + byte addr[8]; + + if ( !ds.search(addr)) { + Serial.print("\nNo more addresses.\n"); + ds.reset_search(); + delay(250); + return; + } + + Serial.print("\nR="); + for( i = 0; i < 8; i++) { + Serial.print(addr[i], HEX); + Serial.print(" "); + } + + if ( OneWire::crc8( addr, 7) != addr[7]) { + Serial.print(" CRC is not valid!\n"); + return; + } + + if ( addr[0] != 0x10) { + Serial.print("\nDevice is not a DS18S20 family device.\n"); + return; + } + + // The DallasTemperature library can do all this work for you! + + ds.reset(); + ds.select(addr); + ds.write(0x44,1); // start conversion, with parasite power on at the end + + delay(1000); // maybe 750ms is enough, maybe not + // we might do a ds.depower() here, but the reset will take care of it. + + present = ds.reset(); + ds.select(addr); + ds.write(0xBE); // Read Scratchpad + + Serial.print("\nP="); + Serial.print(present,HEX); + Serial.print(" "); + for ( i = 0; i < 9; i++) { // we need 9 bytes + data[i] = ds.read(); + Serial.print(data[i], HEX); + Serial.print(" "); + } + Serial.println(); + Serial.print(" CRC="); + Serial.print( OneWire::crc8( data, 8), HEX); + Serial.println(); +} diff --git a/rf433ctl/rf433ctl.pde b/rf433ctl/rf433ctl.pde index a00e914..0a7abac 100644 --- a/rf433ctl/rf433ctl.pde +++ b/rf433ctl/rf433ctl.pde @@ -1,10 +1,23 @@ #include #include #include +#include +#include //********************************************************************// #define DATA_OUT_PIN 13 +#define IR_MOVEMENT_PIN 9 +#define ONE_WIRE_PIN 8 +#define PANIC_BUTTON_PIN 7 +#define IR_SAMPLE_DURATION 20000 +#define IR_TRESHOLD 13000 +#define PB_SAMPLE_DURATION 5000 +#define PB_TRESHOLD 5000 + +OneWire onewire(ONE_WIRE_PIN); +DallasTemperature dallas_sensors(&onewire); +DeviceAddress onShieldTemp = { 0x10, 0xE7, 0x77, 0xD3, 0x01, 0x08, 0x00, 0x3F }; typedef struct { byte offset; @@ -180,15 +193,66 @@ void send_frame(const word_t w) //********************************************************************// +void printTemperature(DeviceAddress deviceAddress) +{ + dallas_sensors.requestTemperatures(); + float tempC = dallas_sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.println(tempC); + //Serial.print(" Temp F: "); + //Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit +} + +//********************************************************************// + void setup() { pinMode(DATA_OUT_PIN, OUTPUT); digitalWrite(DATA_OUT_PIN, LOW); + pinMode(IR_MOVEMENT_PIN, INPUT); // set pin to input + digitalWrite(IR_MOVEMENT_PIN, LOW); // turn off pullup resistors + pinMode(PANIC_BUTTON_PIN, INPUT); // set pin to input + digitalWrite(PANIC_BUTTON_PIN, HIGH); // turn on pullup resistors + + onewire.reset(); + onewire.reset_search(); + dallas_sensors.begin(); + //in case we change temp sensor: + if (!dallas_sensors.getAddress(onShieldTemp, 0)) + Serial.println("Unable to find address for Device 0"); + dallas_sensors.setResolution(onShieldTemp, 9); + Serial.begin(9600); } +unsigned int ir_time=IR_SAMPLE_DURATION; +unsigned int ir_count=0; +unsigned int pb_time=PB_SAMPLE_DURATION; +unsigned int pb_count=0; + void loop() { + ir_time--; + pb_time--; + ir_count += (digitalRead(IR_MOVEMENT_PIN) == HIGH); + pb_count += (digitalRead(PANIC_BUTTON_PIN) == LOW); + + if (ir_time == 0) + { + if (ir_count >= IR_TRESHOLD) + Serial.println("movement"); + ir_time=IR_SAMPLE_DURATION; + ir_count=0; + } + + if (pb_time == 0) + { + if (pb_count >= PB_TRESHOLD) + Serial.println("PanicButton"); + pb_time=PB_SAMPLE_DURATION; + pb_count=0; + } + if(Serial.available()) { char command = Serial.read(); @@ -227,6 +291,7 @@ void loop() send_frame(words[D2_ON]); else if(command == 'k') send_frame(words[D2_OFF]); - + else if(command == 'T') + printTemperature(onShieldTemp); } }