X-Git-Url: https://git.realraum.at/?p=svn42.git;a=blobdiff_plain;f=rf433ctl%2FOneWire%2FOneWire.cpp;fp=rf433ctl%2FOneWire%2FOneWire.cpp;h=0000000000000000000000000000000000000000;hp=e71762036852c49dd585170201a8af9f660af9a6;hb=ff9137d257207a3a4b03c4f453cc1b7ce1e3cf17;hpb=a34e51d757fe52cb19de2937ae1b211894167524 diff --git a/rf433ctl/OneWire/OneWire.cpp b/rf433ctl/OneWire/OneWire.cpp deleted file mode 100644 index e717620..0000000 --- a/rf433ctl/OneWire/OneWire.cpp +++ /dev/null @@ -1,502 +0,0 @@ -/* -Copyright (c) 2007, Jim Studt - - -Version 2.0: Modifications by Paul Stoffregen, January 2010: -http://www.pjrc.com/teensy/td_libs_OneWire.html - Search fix from Robin James - http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - Use direct optimized I/O in all cases - Disable interrupts during timing critical sections - (this solves many random communication errors) - Disable interrupts during read-modify-write I/O - Reduce RAM consumption by eliminating unnecessary - variables and trimming many to 8 bits - Optimize both crc8 - table version moved to flash - -Modified to work with larger numbers of devices - avoids loop. -Tested in Arduino 11 alpha with 12 sensors. -26 Sept 2008 -- Robin James -http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - -Updated to work with arduino-0008 and to include skip() as of -2007/07/06. --RJL20 - -Modified to calculate the 8-bit CRC directly, avoiding the need for -the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 --- Tom Pollard, Jan 23, 2008 - -Permission is hereby granted, free of charge, to any person obtaining -a copy of this software and associated documentation files (the -"Software"), to deal in the Software without restriction, including -without limitation the rights to use, copy, modify, merge, publish, -distribute, sublicense, and/or sell copies of the Software, and to -permit persons to whom the Software is furnished to do so, subject to -the following conditions: - -The above copyright notice and this permission notice shall be -included in all copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - -Much of the code was inspired by Derek Yerger's code, though I don't -think much of that remains. In any event that was.. - (copyleft) 2006 by Derek Yerger - Free to distribute freely. - -The CRC code was excerpted and inspired by the Dallas Semiconductor -sample code bearing this copyright. -//--------------------------------------------------------------------------- -// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. -// -// Permission is hereby granted, free of charge, to any person obtaining a -// copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the -// Software is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included -// in all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES -// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, -// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -// OTHER DEALINGS IN THE SOFTWARE. -// -// Except as contained in this notice, the name of Dallas Semiconductor -// shall not be used except as stated in the Dallas Semiconductor -// Branding Policy. -//-------------------------------------------------------------------------- -*/ - -#include "OneWire.h" -#include "pins_arduino.h" -#include "Arduino.h" - -extern "C" { -#include -#include -#include -} - -OneWire::OneWire(uint8_t pin) -{ - bitmask = digitalPinToBitMask(pin); - baseReg = portInputRegister(digitalPinToPort(pin)); -#if ONEWIRE_SEARCH - reset_search(); -#endif -} - - -#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0) -#define DIRECT_MODE_INPUT(base, mask) ((*(base+1)) &= ~(mask)) -#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) |= (mask)) -#define DIRECT_WRITE_LOW(base, mask) ((*(base+2)) &= ~(mask)) -#define DIRECT_WRITE_HIGH(base, mask) ((*(base+2)) |= (mask)) - - -// Perform the onewire reset function. We will wait up to 250uS for -// the bus to come high, if it doesn't then it is broken or shorted -// and we return a 0; -// -// Returns 1 if a device asserted a presence pulse, 0 otherwise. -// -uint8_t OneWire::reset(void) -{ - uint8_t mask=bitmask; - volatile uint8_t *reg asm("r30") = baseReg; - uint8_t r; - uint8_t retries = 125; - - cli(); - DIRECT_MODE_INPUT(reg, mask); - sei(); - // wait until the wire is high... just in case - do { - if (--retries == 0) return 0; - delayMicroseconds(2); - } while ( !DIRECT_READ(reg, mask)); - - cli(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - sei(); - delayMicroseconds(500); - cli(); - DIRECT_MODE_INPUT(reg, mask); // allow it to float - delayMicroseconds(80); - r = !DIRECT_READ(reg, mask); - sei(); - delayMicroseconds(420); - return r; -} - -// -// Write a bit. Port and bit is used to cut lookup time and provide -// more certain timing. -// -void OneWire::write_bit(uint8_t v) -{ - uint8_t mask=bitmask; - volatile uint8_t *reg asm("r30") = baseReg; - - if (v & 1) { - cli(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - delayMicroseconds(10); - DIRECT_WRITE_HIGH(reg, mask); // drive output high - sei(); - delayMicroseconds(55); - } else { - cli(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - delayMicroseconds(65); - DIRECT_WRITE_HIGH(reg, mask); // drive output high - sei(); - delayMicroseconds(5); - } -} - -// -// Read a bit. Port and bit is used to cut lookup time and provide -// more certain timing. -// -uint8_t OneWire::read_bit(void) -{ - uint8_t mask=bitmask; - volatile uint8_t *reg asm("r30") = baseReg; - uint8_t r; - - cli(); - DIRECT_MODE_OUTPUT(reg, mask); - DIRECT_WRITE_LOW(reg, mask); - delayMicroseconds(3); - DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise - delayMicroseconds(9); - r = DIRECT_READ(reg, mask); - sei(); - delayMicroseconds(53); - return r; -} - -// -// Write a byte. The writing code uses the active drivers to raise the -// pin high, if you need power after the write (e.g. DS18S20 in -// parasite power mode) then set 'power' to 1, otherwise the pin will -// go tri-state at the end of the write to avoid heating in a short or -// other mishap. -// -void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { - uint8_t bitMask; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) { - OneWire::write_bit( (bitMask & v)?1:0); - } - if ( !power) { - cli(); - DIRECT_MODE_INPUT(baseReg, bitmask); - DIRECT_WRITE_LOW(baseReg, bitmask); - sei(); - } -} - -// -// Read a byte -// -uint8_t OneWire::read() { - uint8_t bitMask; - uint8_t r = 0; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) { - if ( OneWire::read_bit()) r |= bitMask; - } - return r; -} - -// -// Do a ROM select -// -void OneWire::select( uint8_t rom[8]) -{ - int i; - - write(0x55); // Choose ROM - - for( i = 0; i < 8; i++) write(rom[i]); -} - -// -// Do a ROM skip -// -void OneWire::skip() -{ - write(0xCC); // Skip ROM -} - -void OneWire::depower() -{ - cli(); - DIRECT_MODE_INPUT(baseReg, bitmask); - sei(); -} - -#if ONEWIRE_SEARCH - -// -// You need to use this function to start a search again from the beginning. -// You do not need to do it for the first search, though you could. -// -void OneWire::reset_search() - { - // reset the search state - LastDiscrepancy = 0; - LastDeviceFlag = FALSE; - LastFamilyDiscrepancy = 0; - for(int i = 7; ; i--) - { - ROM_NO[i] = 0; - if ( i == 0) break; - } - } - -// -// Perform a search. If this function returns a '1' then it has -// enumerated the next device and you may retrieve the ROM from the -// OneWire::address variable. If there are no devices, no further -// devices, or something horrible happens in the middle of the -// enumeration then a 0 is returned. If a new device is found then -// its address is copied to newAddr. Use OneWire::reset_search() to -// start over. -// -// --- Replaced by the one from the Dallas Semiconductor web site --- -//-------------------------------------------------------------------------- -// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing -// search state. -// Return TRUE : device found, ROM number in ROM_NO buffer -// FALSE : device not found, end of search -// -uint8_t OneWire::search(uint8_t *newAddr) -{ - uint8_t id_bit_number; - uint8_t last_zero, rom_byte_number, search_result; - uint8_t id_bit, cmp_id_bit; - - unsigned char rom_byte_mask, search_direction; - - // initialize for search - id_bit_number = 1; - last_zero = 0; - rom_byte_number = 0; - rom_byte_mask = 1; - search_result = 0; - - // if the last call was not the last one - if (!LastDeviceFlag) - { - // 1-Wire reset - if (!reset()) - { - // reset the search - LastDiscrepancy = 0; - LastDeviceFlag = FALSE; - LastFamilyDiscrepancy = 0; - return FALSE; - } - - // issue the search command - write(0xF0); - - // loop to do the search - do - { - // read a bit and its complement - id_bit = read_bit(); - cmp_id_bit = read_bit(); - - // check for no devices on 1-wire - if ((id_bit == 1) && (cmp_id_bit == 1)) - break; - else - { - // all devices coupled have 0 or 1 - if (id_bit != cmp_id_bit) - search_direction = id_bit; // bit write value for search - else - { - // if this discrepancy if before the Last Discrepancy - // on a previous next then pick the same as last time - if (id_bit_number < LastDiscrepancy) - search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); - else - // if equal to last pick 1, if not then pick 0 - search_direction = (id_bit_number == LastDiscrepancy); - - // if 0 was picked then record its position in LastZero - if (search_direction == 0) - { - last_zero = id_bit_number; - - // check for Last discrepancy in family - if (last_zero < 9) - LastFamilyDiscrepancy = last_zero; - } - } - - // set or clear the bit in the ROM byte rom_byte_number - // with mask rom_byte_mask - if (search_direction == 1) - ROM_NO[rom_byte_number] |= rom_byte_mask; - else - ROM_NO[rom_byte_number] &= ~rom_byte_mask; - - // serial number search direction write bit - write_bit(search_direction); - - // increment the byte counter id_bit_number - // and shift the mask rom_byte_mask - id_bit_number++; - rom_byte_mask <<= 1; - - // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask - if (rom_byte_mask == 0) - { - rom_byte_number++; - rom_byte_mask = 1; - } - } - } - while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 - - // if the search was successful then - if (!(id_bit_number < 65)) - { - // search successful so set LastDiscrepancy,LastDeviceFlag,search_result - LastDiscrepancy = last_zero; - - // check for last device - if (LastDiscrepancy == 0) - LastDeviceFlag = TRUE; - - search_result = TRUE; - } - } - - // if no device found then reset counters so next 'search' will be like a first - if (!search_result || !ROM_NO[0]) - { - LastDiscrepancy = 0; - LastDeviceFlag = FALSE; - LastFamilyDiscrepancy = 0; - search_result = FALSE; - } - for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; - return search_result; - } - -#endif - -#if ONEWIRE_CRC -// The 1-Wire CRC scheme is described in Maxim Application Note 27: -// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" -// - -#if ONEWIRE_CRC8_TABLE -// This table comes from Dallas sample code where it is freely reusable, -// though Copyright (C) 2000 Dallas Semiconductor Corporation -static const uint8_t PROGMEM dscrc_table[] = { - 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, - 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, - 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, - 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, - 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, - 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, - 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, - 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, - 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, - 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, - 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, - 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, - 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, - 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, - 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, - 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; - -// -// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM -// and the registers. (note: this might better be done without to -// table, it would probably be smaller and certainly fast enough -// compared to all those delayMicrosecond() calls. But I got -// confused, so I use this table from the examples.) -// -uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) -{ - uint8_t crc = 0; - - while (len--) { - crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); - } - return crc; -} -#else -// -// Compute a Dallas Semiconductor 8 bit CRC directly. -// -uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) -{ - uint8_t crc = 0; - - while (len--) { - uint8_t inbyte = *addr++; - for (uint8_t i = 8; i; i--) { - uint8_t mix = (crc ^ inbyte) & 0x01; - crc >>= 1; - if (mix) crc ^= 0x8C; - inbyte >>= 1; - } - } - return crc; -} -#endif - -#if ONEWIRE_CRC16 -static short oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; - -// -// Compute a Dallas Semiconductor 16 bit CRC. I have never seen one of -// these, but here it is. -// -unsigned short OneWire::crc16(unsigned short *data, unsigned short len) -{ - unsigned short i; - unsigned short crc = 0; - - for ( i = 0; i < len; i++) { - unsigned short cdata = data[len]; - - cdata = (cdata ^ (crc & 0xff)) & 0xff; - crc >>= 8; - - if (oddparity[cdata & 0xf] ^ oddparity[cdata >> 4]) crc ^= 0xc001; - - cdata <<= 6; - crc ^= cdata; - cdata <<= 1; - crc ^= cdata; - } - return crc; -} -#endif - -#endif